
NPS-AM-12-C9P06R02-054

bñÅÉêéí=cêçã=qÜÉ=

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

káåíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=
tÉÇåÉëÇ~ó=pÉëëáçåë=

sçäìãÉ=f=

=

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Addressing Challenges in the Acquisition of Secure
Software Systems With Open Architectures

Walt Scacchi and Thomas Alspaugh
University California, Irvine

Published April 30, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 APR 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Addressing Challenges in the Acquisition of Secure Software Systems
With Open Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University California, Irvine,Institute for Software
Research,Irvine,CA,92697

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We seek to articulate and address a number of emerging challenges in continuously assuring the security of
open architecture (OA) software systems throughout the system acquisition life-cycle. It is now clear that
future system must resist coordinated international attacks on vulnerable software-intensive systems that
are of high value, and control complex systems. But current approaches to system security are most often
piecemeal with little or no support for guiding what system security requirements must address across
different systemprocessing elements and data levels, and how those can be manifest during the design
building, and deployment of OA software systems. We present a framework that organizes OA system
security elements and mechanisms in forms that can be aligned with different stages of acquisition
spanning system design, building, and run-time deployment, as well as system evolution. We provide a case
study to show our scheme and how it can be applied to common enterprise systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

52

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented at the symposium was supported by the acquisition chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request defense acquisition research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Research Program’s sponsored research reports may be printed
from our website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=i -

=

Preface & Acknowledgements

Welcome to our Ninth Annual Acquisition Research Symposium! This event is the
highlight of the year for the Acquisition Research Program (ARP) here at the Naval
Postgraduate School (NPS) because it showcases the findings of recently completed
research projects—and that research activity has been prolific! Since the ARP’s founding in
2003, over 800 original research reports have been added to the acquisition body of
knowledge. We continue to add to that library, located online at
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has
engaged researchers at over 60 universities and other institutions, greatly enhancing the
diversity of thought brought to bear on the business activities of the DoD.

We generate this level of activity in three ways. First, we solicit research topics from
academia and other institutions through an annual Broad Agency Announcement,
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to
seek NPS faculty research supporting the interests of our program sponsors. Finally, we
serve as a “broker” to market specific research topics identified by our sponsors to NPS
graduate students. This three-pronged approach provides for a rich and broad diversity of
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition.
We are grateful to those of you who have contributed to our research program in the past
and hope this symposium will spark even more participation.

We encourage you to be active participants at the symposium. Indeed, active
participation has been the hallmark of previous symposia. We purposely limit attendance to
350 people to encourage just that. In addition, this forum is unique in its effort to bring
scholars and practitioners together around acquisition research that is both relevant in
application and rigorous in method. Seldom will you get the opportunity to interact with so
many top DoD acquisition officials and acquisition researchers. We encourage dialogue both
in the formal panel sessions and in the many opportunities we make available at meals,
breaks, and the day-ending socials. Many of our researchers use these occasions to
establish new teaming arrangements for future research work. In the words of one senior
government official, “I would not miss this symposium for the world as it is the best forum
I’ve found for catching up on acquisition issues and learning from the great presenters.”

We expect affordability to be a major focus at this year’s event. It is a central tenet of
the DoD’s Better Buying Power initiatives, and budget projections indicate it will continue to
be important as the nation works its way out of the recession. This suggests that research
with a focus on affordability will be of great interest to the DoD leadership in the year to
come. Whether you’re a practitioner or scholar, we invite you to participate in that research.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the ARP:

 Office of the Under Secretary of Defense (Acquisition, Technology, & Logistics)

 Director, Acquisition Career Management, ASN (RD&A)

 Program Executive Officer, SHIPS

 Commander, Naval Sea Systems Command

 Program Executive Officer, Integrated Warfare Systems

 Army Contracting Command, U.S. Army Materiel Command

 Office of the Assistant Secretary of the Air Force (Acquisition)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=ii -

=

 Office of the Assistant Secretary of the Army (Acquisition, Logistics, &
Technology)

 Deputy Director, Acquisition Career Management, U.S. Army

 Office of Procurement and Assistance Management Headquarters, Department
of Energy

 Director, Defense Security Cooperation Agency

 Deputy Assistant Secretary of the Navy, Research, Development, Test &
Evaluation

 Program Executive Officer, Tactical Aircraft

 Director, Office of Small Business Programs, Department of the Navy

 Director, Office of Acquisition Resources and Analysis (ARA)

 Deputy Assistant Secretary of the Navy, Acquisition & Procurement

 Director of Open Architecture, DASN (RDT&E)

 Program Executive Officer, Littoral Combat Ships

We also thank the Naval Postgraduate School Foundation and acknowledge its
generous contributions in support of this symposium.

James B. Greene Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=147 -

=

Panel 6. Considerations in Acquiring Open
Architecture Software Systems

Wednesday, May 16, 2012

1:45 p.m. –
3:15 p.m.

Chair: Captain Joseph J. Beel, USN, Commanding Officer, Space and Naval
Warfare Systems Center Pacific

A Framework for Reuse in the DoN

Randy Mactal, Space and Naval Warfare Systems Center Pacific
Lynne Spruill, APEO Engineering Support

Addressing Challenges in the Acquisition of Secure Software Systems With
Open Architectures

Walt Scacchi and Thomas Alspaugh
University California, Irvine

Certifying Tools for Test Reduction in Open Architecture

Valdis Berzins, Naval Postgraduate School

Joseph J. Beel—Captain Joe Beel was commissioned from the U.S. Naval Academy in 1985,
earning a Bachelor of Science degree in mechanical engineering. He was designated a Naval Aviator
in September 1986. He completed Fleet Replacement Pilot training with HSL-31 in May 1987 and
joined the Sea Snakes of HSL-33, flying the SH-2F Sea Sprite until December 1989. He deployed in
the USS Kirk (FF1067), the USS Knox (FF 1052), the USS Francis Hammond (FF1067), and the USS
Sterrett (CG 31), including service in Operation Earnest Will.

He attended the Naval Postgraduate School in Monterey, CA, from 1990 until 1992, earning a
Master of Science (with distinction) in operations research. He taught in the U.S. Naval Academy
Mathematics Department from May 1992 until May 1995 and served as the Fifth Company Officer
from August 1993 until May 1995. He also served as an advanced seamanship and navigation
instructor and was designated a craftmaster/yard patrol craft officer-in-charge afloat.

Captain Beel completed Fleet Replacement Pilot training with HSL-41 in February 1996 and
joined the Battle Cats of HSL-43, flying the SH-60B Sea Hawk until 1998. He deployed in the USS
Princeton (CG 59).

From June 1998 until August 1999, Captain Beel served as the training and education program
analyst in the Assessment Division (N81), Office of the Chief of Naval Operations. He served in a
Federal Executive Fellowship at the RAND Corporation in Santa Monica, CA, from August 1999 to
August 2000. From August 2000 until September 2002, he served in the USS John C. Stennis (CVN
74), including service in Operations Noble Eagle and Enduring Freedom. He served as officer-in-
charge of Navy Warfare Development Command, Detachment San Diego, from October 2002 until
August 2003. He served as commanding officer and executive officer, Naval Air Technical Data and
Engineering Service Command (NATEC), from September 2003 until September 2006.

Most recently, Captain Beel served four years in the Program Executive Office (PEO), Command,
Control, Communication, Computers, and Intelligence (C4I); as PEO chief of staff and deputy for
Operations from October 2006 to June 2008; and as deputy program manager of the Navy Tactical
Networks Program Office from June 2008 to August 2010.

Captain Beel is a member of the Defense Acquisition Corps and is Level III certified in Program
Management, Life Cycle Logistics and Production, and Quality and Manufacturing. He is a certified

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=148 -

=

Lean Six Sigma Black Belt. He led a continuous process improvement project that was awarded a
California Council of Excellence California Team Excellence bronze award and was selected to
compete for the American Society of Quality’s International Team Excellence Award at the 2011
World Conference on Quality and Improvement.

Captain Beel’s awards include the Meritorious Service Medal (three awards), Air Medal (individual
award), Navy Commendation Medal (five awards), Navy Achievement Medal, and various unit,
campaign, and service awards. He has also received the Sikorsky “Winged-S” Lifesaving Rescue
Award.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=165 -

=

Addressing Challenges in the Acquisition of Secure
Software Systems With Open Architectures

Walt Scacchi—Scacchi is a senior research scientist and research faculty member at the Institute for
Software Research, University of California, Irvine. He received a PhD in information and computer
science from UC Irvine in 1981. From 1981 to 1998, he was on the faculty at the University of
Southern California. In 1999, he joined the Institute for Software Research at UC Irvine. He has
published more than 150 research papers and has directed 60 externally funded research projects. In
2012, he serves as general co-chair of the 8th IFIP International Conference on Open Source
Systems (OSS2012). [wscacchi@ics.uci.edu]

Thomas Alspaugh—Alspaugh is a project scientist at the Institute for Software Research, University
of California, Irvine. His research interests are in software engineering, requirements, and licensing.
Before completing his PhD, he worked as a software developer, team lead, and manager in industry,
and as a computer scientist at the Naval Research Laboratory on the Software Cost Reduction, or A-
7 project. [thomas.alspaugh@acm.org]

Abstract
We seek to articulate and address a number of emerging challenges in continuously assuring
the security of open architecture (OA) software systems throughout the system acquisition
life-cycle. It is now clear that future system must resist coordinated international attacks on
vulnerable software-intensive systems that are of high value, and control complex systems.
But current approaches to system security are most often piecemeal with little or no support
for guiding what system security requirements must address across different system-
processing elements and data levels, and how those can be manifest during the design,
building, and deployment of OA software systems. We present a framework that organizes
OA system security elements and mechanisms in forms that can be aligned with different
stages of acquisition spanning system design, building, and run-time deployment, as well as
system evolution. We provide a case study to show our scheme and how it can be applied to
common enterprise systems.

Introduction
We seek to research, develop, and refine new concepts, techniques, and tools for

continuously assuring the security of large-scale, open architecture (OA) software systems composed
from software components that include proprietary/closed source software (CSS) and open source
software (OSS). Federal government acquisition policy, as well as many leading enterprise IT
centers, now encourage the use of CSS and OSS, and thus OA, in the development, deployment,
and evolution of complex, software-intensive systems.

We seek to prototype and demonstrate a new innovative approach and supporting
technology that can develop new principles for correctness and security properties for OA systems.
This includes developing basic principles to determine the security and performance properties of
software systems, the conditions under which these properties hold, and the methods used to prove
these properties of interest for systems. Of particular interest are networked OA software systems
that are adapted or that evolve to dynamic conditions and threats during their development,
deployment, and usage, including those that may rely on new technologies like OA mobile devices
(Smalley, 2012; “Security Technical Information Guide,” n.d.) or other IT systems relying on open
source technologies (Department of Defense [DoD], 2010; Garcia, 2010; Gizzi, 2011; Navy, 2010). In
particular, such study may be of value to securing new cyber warfare technologies (DoD, 2011;
Scacchi, Brown, & Nies, 2011). Our efforts may also lead to fundamental advancements for secure
information sharing between information producers and consumers in order to realize more secure
information management, sharing, and interaction.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=166 -

=

Challenges of Securing Systems with Open Architectures
Coordinated international attacks on vulnerable software-intensive systems that are

of high value and on control complex systems are becoming ever more apparent. As the
StuxNet case demonstrates, security threats to software systems are multi-valent, multi-
modal, and distributed across independently developed software system components
(Stuxnet, 2011). Similarly, it is now clear that physically isolated/confined systems are
vulnerable to external security attacks via portable storage devices like USB drives, modified
end-user devices (e.g., keyboards, mice; “Attack of the Computer Mouse,” 2011), and social
engineering techniques (Sawyers, 2011). This requires new security measures and policies
necessary to defend such systems through new threat prevention and detection methods,
as well as appropriate response mechanisms. Thus, what makes a system or system
architecture secure changes over time, as new threats emerge and as systems evolve to
meet new functional requirements. Consequently, there is need for an approach to
continuously assure the security of complex, evolving OA systems in ways that are practical
and scalable yet robust, tractable, and adaptable.

However, the best practices for developing OA systems whose components may be
subject to differing security requirements (e.g., security rights and obligations) are unclear.
Such practices are yet to be identified. This puts IT centers, system integrators, and service
providers at a disadvantage when seeking to develop new software-intensive systems
whose costs may be lower due to the integration of mature OSS components that are
interfaced to pre-existing or new CSS components. OA systems thus present new
challenges for assuring software system security.

Software systems security mechanisms for enabling security requirements or policies
are often employed on an ad hoc basis, because there are not convenient or interactive
tools or formal techniques for specifying the security requirements of an OA system or its
components. Instead, what is available are disjoint mechanisms for implementing individual
system security features (Loscocco et al., 1998; Spencer et al., 1999), such as

 mandatory access control lists and firewalls;

 multi-level security;

 authentication (including certificate authority and passwords);

 cryptographic support (including public key certificates);

 encapsulation (including virtualization and hidden versus public APIs), hardware
confinement (memory, storage, and external device [port] isolation; Sun, Wang,
Zhang, & Stavrou, 2012), and type enforcement capabilities;

 secure programming practices (including secure coding standards, data type,
and value range checking; Seacord, 2008);

 data content or control signal flow logging/auditing;

 honey-pots and traps;

 security technical information guides for configuring the security parameters for
applications (“Security Technical,” 2011) and operating systems (Smalley, 2012);
and

 functionally equivalent but diverse multi-variant software executables (Franz,
2010; Salamat, Jackson, Wagner, Wimmer, & Franz, 2011).

But there is a gap between these mechanisms and any concept of a comprehensive
security policy, whether for a system or for any of its components, and no obvious way to
integrate and evaluate them as a group. Similarly, it is unclear what relationships arise or

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=167 -

=

are in place among these different security mechanisms. Further, what guidance is needed
regarding which security mechanism to use where, when, why, and how, and how is their
usage updated or configured as extant system security policy evolves? The mechanisms
are also mostly software implementation choices rather than system architectural choices;
no system-specific framework (like an architecture) exists in which they can be pulled
together in patterns that can be designed to meet specific security policies and goals. But in
an OA system, it may be unclear or unlikely that system integrators will find mature OSS or
CSS components that supply all of the system security features that the integrator or the
customer requires on a timely, cost-effective basis.

Next, OA systems evolve through more pathways than traditional systems:

 individual components evolve through update revisions (e.g., security patches)
made by the component’s developers;

 individual components are updated with new, functionally enhanced versions
from outside providers;

 individual components are replaced by different components from other sources;

 component interfaces evolve, either due to the system developers or outside
sources;

 system architecture and configuration evolve as the developers adapt them to
address new functional requirements;

 system functional and security requirements evolve, either due to the system
developers, recognized gaps, or outside stakeholders; and

 system security policies, mechanisms, security components, and system
configuration parameter settings also change over time.

These additional evolution paths are tied to the benefits of using OA systems with
OSS components, but they also present new challenges for security. OA systems are
continually evolving, and in our view this fact is fundamentally unaddressed by prior work in
security.

Beyond these issues, we must consider the following: How should customers specify
what security system features they want their delivered systems to support? How can the
history of security failures (vulnerabilities), faults (exploits), possible cyber-warfare attacks
(threats), and possible responses (updating system configuration with new elements that
resist new threats, close new vulnerability, and prevent newly discovered exploits) guide the
evolution of approaches for developing secure OA systems? How can answers to questions
like these help formulate a technological innovation element of the DoD strategy for
operating in cyberspace (DoD, 2011)? Questions like this remain unresolved at present.

Verification of the usage of security mechanisms in software systems is unclear and
often focused either at the whole system (macro) level, or at the program function or coding
(micro) level, but generally not at the architectural component and interconnection (meso)
level, and not for combinations and alternative configurations of CSS and OSS components
with different security histories. We believe that there is a new or under-explored opportunity
to address security requirements at the architectural level.

As such, we see the following basic challenges in assuring OA system security:

 how to verify the security of OA system designs throughout system development,
deployment, and post-deployment support; and

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=168 -

=

 how to validate the effectiveness of OA system security measures and feed
evolving knowledge of vulnerabilities and exploits back into the ongoing
development (continuous evolution) stream for existing and planned systems in
an operational, testable form that system designers can use and program
managers can assess.

Similarly, we see the following basic challenges in assuring security of OA software
systems:

 how best to develop complex OA systems whose OSS or CSS system
components may originally come from trusted sources but in which these
components, the architectural configuration, and security requirements are
subject to multiple sources of adaptation and evolution;

 how to go beyond “many eyes” (a large number of skilled reviewers) to establish
a scalable basis for automated or semi-automated verification of software system
security properties as the system continually evolves;

 how best to achieve continuous software system security assurance as a system
is adapted and evolved to address new security requirements and technology
progress;

 how best to protect OA systems through biologically inspired natural defenses
that provide adaptive and resilient mechanisms, including agile response,
isolation, and fail-soft recovery to immediate attacks, as well as adaptation via
dynamic reconfiguration, multi-version mechanisms, (artificial) ecological
diversity responses to sustained vulnerabilities or threats (Shrobe, 2011); and

 how to create reference models and security policy requirements that articulate
security scenarios appropriate for oversight during system acquisition, as well as
during system design, implementation, deployment, and beyond.

Securing Software Systems
The key ideas in our approach to develop and demonstrate a new solution to the

challenges is to specify verifiable security requirements of OA systems using formalized
“security licenses” (Scacchi & Alspaugh, 2011) and to use an explicit, evolvable software
architecture to mediate and carry the paths of interactions among them. Security licenses
must specify the security requirements and access/update rights and obligations within an
OA system, its CSS and OSS components, and their interconnections (e.g., APIs,
databases, shared files, and communication protocols) that defend against threats and
enable appropriate responses to attacks or suspicious/anomalous system behaviors.
Subsequently, the goal of our approach is to articulate and refine the ways and means for
expressing and verifying that the security requirements of OA system components match up
appropriately and together support the security requirements of the entire OA system at
architectural design-time while enabling the automated verification of system
builds/compositions and deployable, as well as of executable run-time versions of the
system.

Software licenses represent a collection of rights and obligations for what can or
cannot be done with a licensed software component. Licenses can thus denote both
functional and non-functional requirements that apply to software systems or system
components during their development and deployment. But rights and obligations are not
limited to concerns or constraints applicable only to software as IP. Instead, they can be
written in ways that stipulate functional or non-functional requirements of different kinds.
Consider, for example, that desired or necessary software system security properties can

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=169 -

=

also be expressed as rights and obligations addressing system confidentiality, integrity,
accountability, system availability, and assurance. This kind of approach provides new
principles of correctness for software IP requirements (Breaux & Anton, 2005, 2008).

Traditionally, developing robust specifications for non-functional software system
security properties in natural language often produces specifications that are ambiguous,
misleading, inconsistent across system components, and lacking sufficient details (Yau &
Chen, 2006). Using a semantic model and logic to formally specify the rights and obligations
required for a software system or component to be secure (Breaux & Anton, 2005, 2008;
Yau & Chen, 2006) means that it may be possible to develop both a “security architecture”
notation and model specification that associates given security rights and obligations across
a software system, or system of systems. Similarly, it suggests the possibility of developing
computational tools or interactive architecture development environments that can be used
to specify, model, and analyze a software system’s security architecture at different times in
its development—design-time, build-time, and run-time. We have already demonstrated how
such an approach can work when limiting attention to IP rights and obligations.

The approach we have been developing for the past few years for modeling and
analyzing software system IP license architectures for OA systems (Alspaugh, Asuncion, &
Scacchi, 2009; Alspaugh, Scacchi, & Asuncion, 2010; Scacchi & Alspaugh, 2008) may
therefore be extendable to also address OA systems with heterogeneous software security
license rights and obligations (Scacchi & Alspaugh, 2011). Furthermore, the idea of common
or reusable software security licenses may be analogous to the reusable security
requirements templates Firesmith (2004) proposed at the Software Engineering Institute.
Such security requirement templates may simplify and guide the efforts of customers (or
contracting officers) to more readily specify workable requirements that can be readily
verified through system development, deployment, and post-deployment support.

Security licenses can be specified, modeled, and analyzed continuously from initial
system architectural design through post-deployment support and system evolution, with
key points for security license analysis occurring at design-time, build/linking-time, and
deployment/run-time. Such security licenses can be stated both (a) informally, using
restricted natural language for human readability, authorship, and description of non-
functional security requirements; as well as (b) formally, specifying functional security
requirements in a computer processable form using a logic-based scheme and modeling
notation, with automated production of (a) from (b) and automated architecture-mediated
inferences using (b). Analysis of a system/s security requirements can therefore be
integrated into the software architecture tool used to express and evolve the architecture so
that the analysis evolves automatically in parallel with the architecture.

In general terms, a security license is analogous to a software copyright license such
as a general public license (GPL; GNU, 2007). Software licenses consist of intellectual
property (IP) rights granted by the license, and corresponding license obligations needed to
obtain the rights. Our innovation is to similarly specify the security obligations and rights of
OA system components using elements found in known security capabilities, which we can
then model, analyze, and support throughout the system’s development and evolution, and
use to guide system design and instantiation. Our initial investigation of security licenses
(Scacchi & Alspaugh, 2011) has identified rights and obligations, such as

 the obligation for a user to verify his/her authority to see compartment T by
password or other specified authentication process;

 the obligation for a specific component to have been vetted for the capability to
read and update data in compartment T;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=170 -

=

 the obligation for all components connected to specified component C to grant it
the capability to read and update data in compartment T;

 the obligation to reconfigure a system in response to detected threats when given
the right to select and include different component versions or executable
component variants;

 the right to read and update data in compartment T using the licensed
component;

 the right to replace specified component C with some other component;

 the right to add or update specified component D in a specified configuration;

 the right to add, update, or remove a security mechanism; and

 the right to update security license L.

Further, formally specified OA security licenses are verifiable, as well as grounded in
functional and testable system security capabilities.

The security reasoning chains among the security licenses are mediated by the
system architecture and evolve automatically with it, much like they can for IP licenses
(Alspaugh et al., 2009; Alspaugh et al., 2011; Alspaugh et al., 2010). Each kind of security
license details how its obligations are propagated architecturally to other system
components. The results of this propagation, coupled with automated identification of gaps,
conflicts, and subsumptions, are communicated to analysts as architecturally organized
arguments supporting the existence of the identified issues. The arguments provide context-
appropriate guidance in terms of the system architecture and the security licenses of the
components involved for resolution of security problems through the evolution of the system
design.

Our approach neither assumes nor proves that individual elements of an OA system
are secure but instead seeks to determine what security rights and obligations are in effect
at any time for the overall system architecture as a function of the security rights and
obligations of its components. This means that it is possible to configure a secure OA
system whose components may be insecure, or not equally secure. Our approach also
supports determination of where or how OA system security rights or obligations may be in
conflict, mismatch, or subsume one another as individual system components or connectors
are adapted to evolve over time. As an organization’s security policies (i.e., their security
requirements) evolve and adapt, the OA system’s security rights and obligations are evolved
to match and satisfy them, as long as all security requirements can be expressed through
description logic relationships among them.

Security rights and obligations are characterized in terms of enterprise security
policies and goals; within that closed world, our approach enables specification of the
security properties that an open system architecture must match or satisfy. These security
requirements also direct acquisition program managers and architecture analysts attention
to problem areas with greatest impact on system security. Where our approach identifies a
conflict or mismatch, it indicates an actual, open-world weakness in the security of the OA
system under analysis. The chain of reasoning is architecture-mediated, with its units
defined piecewise in each component's security license and evolving continuously as the
system architecture, configuration, and security requirements evolve. As new kinds or types
of vulnerability, threats, or exploits emerge, as well as new categories of effective responses
and emerging alternative security mechanisms, we seek to elaborate and demonstrate that
this approach can continuously accommodate the specification and analysis of changing
security requirements.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=171 -

=

Product Lines: Alternatives, Versions, and Variants of OA Elements
In producing a secure OA system in a software product line, there are several levels

of variation available for producing artificial diversity among equivalent instances and for
selecting and evolving in the face of threats.

At the highest level of granularity, a system developer or integrator can choose
among alternative producers of similar components, services, and platforms (Sun et al.,
2012). For example, we can find functionally similar alternatives from software (component)
producers of Web browsers like Mozilla (Firefox, Camino, Sea Monkey) versus Google
(Chrome) versus Microsoft (Internet Explorer), versus others. Similarly, for word processors,
we find alternatives including Microsoft (Word) versus abisoft.com (AbiWord) versus Google
(Google Docs, which is a remote Web service rather than a component), versus others.
Likewise, for e-mail and calendar applications, we find alternatives like Microsoft Outlook,
Gnome Evolution, Google Mail, and Google Calendar, among others. For operating
systems, we find Red Hat Enterprise Linux, Microsoft Windows, Apple OSX, and Google
Android, among others. Finally, note that some producers produce more than one
alternative of the same kind of component or service, such as Mozilla’s Web browsers
(Firefox, Camino, SeaMonkey), so that a choice among those particular components does
not result in a change of producers.

Functionally similar components and services may not be exactly interchangeable,
unless their interfaces are similar or identical. As such, it may be necessary to modify, for
example, OA system topology or replace connector types, and other architectural measures
may be necessary to change from one producer to another, depending on the functionality
needed to satisfy functional requirements. However, in general, the overall functionality
provided by the system remains substantially the same; but now the diversity among
alternative system instances is the greatest: not only is the component, service, or platform
distinct between two instances, but its architectural connections in the system will also be
distinct, as will be the software development process and organization that produced it; so
the chances of a common vulnerability are greatly minimized. Subsequently, when
functionally similar components, connectors, or configurations exist, such that equivalent
alternatives, versions, or variants may be substituted for one another, then we have a strong
relationship among these OA system elements that is called a product family
(Narayanaswamy & Scacchi, 1987; Bosch, 2006) or a product line (Clements & Northrop,
2001).

As described previously, a shift from one alternative to another ordinarily requires a
change in architecture, software connectors, and other measures. Changes between some
alternatives will also produce a change of producers, while others will not. However, when
components or connectors provide alternative implementations of the functionality they
provide, then these are designated as versions. For example, most Linux operating systems
support multiple file systems for data storage, though developers or integrators select their
preferred file system for inclusion at either design-time or build-time. Similarly, for
connectors to remote Web servers, developers or integrators may specify unencrypted (e.g.,
HTTP) or encrypted (e.g., HTTPS) data communication protocols for use in a Web-based
enterprise system. Next, at the OA system configuration level, selection of alternative
components or connectors, or of different versions of components or connectors, result in
different overall system versions that conform to a system product line. Further, recent
advances in source code compilation now allow for creation of functionally identical variants
of software components, though each variant has a different run-time image in the
computer, through code randomization techniques (Franz, 2010; SJWWF11). Last, software
product lines can be bound to a network of software producers, system integrators, and

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=172 -

=

system users/consumers through a software ecosystem (Bosch, 2009), such that secure
systems can be realized through composition or configuration at the software ecosystem
level (SA12). Consequently, we now have a complete and robust basis for specifying OA
systems that can include components, connectors, or application systems from alternative
producers, or with different versions or variants included. This is now our basis for moving
forward to address the challenges of creating secure OA systems through secured software
product lines.

Given the basis for software product lines for OA systems, we now address how to
frame and align software system architectures with software security mechanisms. We use
the following scheme to address this, as shown in Table 1.

Table 1. Different System Security Elements Whose Rights and Obligations
Depend on Capabilities Supported by Lower Level Elements

System security policies provide the overall context for what kinds of security
mechanisms or capabilities (e.g., mandatory role-based data access control) that a
particular systems requires. The requirements must be realized through multiple levels of
system composition that span a processing space from people to processing platforms, and
through data/content space that is processed during system usage/operation.

Aligning system security elements with security mechanisms gives rise to the
following associations:

Platform—base technological elements that constitute the computer environment
that hosts the target system:

 hardware: specifies hardware confinement constraints needed to securely
operate the software system configuration, potentially to address memory,
storage, and external device port isolation (see SecureSwitch [Sun et al., 2012)]).
Hardware may be configured as an embedded processor, mobile computer (e.g.,
smartphone or tablet), personal computer, multi-processor computation server, or
multi-server data center;

 virtual machine: a software layer that can isolate and confine the operating
system, component applications, or application services from direct control of
system hardware, network operations, or operating system processes. OSs,
software systems, components, or connectors can each run within their own
virtual machine, in alternative configurations, as long as they are completely
confined at a higher level of system security and do not overlap virtual machine
boundaries (Spencer et al., 1999; Smalley, 2012);

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=173 -

=

 network: message filtering and access control firewalls for data/control flows that
move across external hardware system security boundaries; and

 operating systems: mandatory access control (Loscocco et al., 1998; Spencer et
al., 1999), capability type enforcement (Smalley, 2012), OS configuration
parameters (“Security Technical,” n.d.), and run-time audit logs, all currently
coded and managed by system integrators/administrators.

Connectors—software mechanisms that implement secure communication
mechanisms within and across system boundaries. Connectors enable security
mechanisms providing

 data cryptography (encryption/decryption) before/after data transfer;

 component-connector-specific firewalls that can be implemented via (pre-
conditions) constraints on in-bound data flow and plug-in/helper application
invocation, or on out-bound data flow and external program invocations (post-
conditions); and

 multi-version connector configurations between components that allow for
artificial diversity and dynamic reconfiguration potential through functionally
similar versions.

Components—software mechanisms that implement application functionality
required for the targeted system to operate as intended. Components enable security
mechanisms providing

 access/usage authentication control obligations (e.g., login with authorized
identification and password) for which people in what roles (e.g., developer,
system integrator, system administrator, system user) have the specified set of
rights to view/update data, data control flow invocations, or external program
invocations;

 encapsulate components as services within virtual machines to confine potential
exploits while mitigating their propagation;

 alternative versions that increase artificial diversity and enable dynamic
replacement with functionally similar alternatives;

 multiple versions that allow for changes in vulnerability space, including
concurrent versions with replicated input data, but different out data connector
(routing) configurations; and

 multiple variants that reduce vulnerability to component version attacks.

System configuration—the composition and interrelationship of components and
connectors that together realize the system architecture at design-time, build-time, or
run-time. System configuration (or composition [Bo06]) enables security by providing

 the ability to host multiple (one or more) alternative, version, or variant system
configurations on one or more processors (either single-core [Sun et al., 2012],
multi-core, multi-blade, or multi-site) that can be dynamically selected in
response to security policy directives or in response to detected threats;

 the ability to host concurrently running multiple (one or more) alternative, version,
or variant system configurations on one or more processors (either multi-core,
multi-blade, or multi-site) that can be dynamically selected in response to security
policy directives or in response to detected threats; and

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=174 -

=

 the ability to (formally) specify system configuration as an open architecture at
design-time, build-time, and deployment run-time, along with automated tools
that can verify the consistency, completeness, and traceability.

Developers, system integrators, and users—denote the people authorized and
trusted to work on or with the configured systems or their elements over time,
depending on their externally assigned role(s):

 developers should employ software development environments, tools, or
processes that reinforce security-safe software coding practices of components
or connectors they implement as products (Seacord, 2008);

 developers should produce multiple, unique, executable variants of the
components or connectors they produce and distribute;

 system integrators design OA system architecture;

 system integrators build OA system configurations that select from one or more
component or connector alternatives, versions, and variants;

 system integrators deploy one or more run-time system configuration variants
that can be readily installed and appropriate parameters entered by system
administrators or end users;

 system integrators or system administrators, or automated mechanisms under
their control must be able to monitor and access system execution audit logs, to
determine if threats or anomalous system behaviors are detected, and to
dynamically reconfigure system configuration or security parameters in order to
move the executable system into a more trusted operational state;

 users must be provided with online identifiers or identification methods that
enable them to access security controlled systems via one or more alternative
authentication mechanisms in place.

In parallel with these processing security spaces are data security spaces:

User I/O data—data that may exist only as it passes across communication
channels. Examples are keystrokes and mouse movements communicated from a
keyboard or mouse to a processor, voice data from microphones and to speakers,
Wi-Fi packets, and so forth. This data may be discarded or incorporated into
ephemeral data.

Ephemeral data—data that exists in memory for a brief time before being either
discarded or incorporated into persistent data. Examples are Web forms that have
been filled out but not submitted, and data in various sorts of hardware buffers.

Persistent data—data that exists for a substantial time on local disks or solid-state
storage devices, USB memory sticks, DVD-ROM, or server storage.

Security policies—provide overall guidance and requirements for what security
mechanisms and regimes are to be designed, implemented, and satisfied during the
deployment, operation, and evolution of a specified system. Security policies

 should provide non-functional requirements regarding the membership, structure,
and behavioral specifications of each of the proceeding categories of security
elements at minimum, or further specification of security sub-elements within
each category, as per the security exposure of the system being addressed;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=175 -

=

o non-functional requirements may only specify rights provided when
corresponding obligations are fulfilled that cannot be automated or
verified in lower level security elements;

o non-functional requirements should be expressible in human-readable
and computer-processable forms within the system security policy
license; and

 must provide functional requirements regarding the membership, structure, and
behavioral specifications of each of the proceeding categories of security
elements at minimum, or further specification of security sub-elements within
each category, as per the security exposure of the system being addressed;

o functional requirements are those that can be formalized, automated, and
verified by corresponding automated mechanisms available at lower level
security elements;

o functional requirements may only specify rights provided when
corresponding obligations are fulfilled that must be automated or verified
in lower level security elements; and

o functional requirements should be expressible in human-readable and
computer-processable forms within the system security policy license.

The case study that follows describes where these different system security
elements appear in forms that can be available for review by authorized program acquisition
personnel.

Case Study of a Secure Product Line for an Enterprise System
Let us consider what needs to be specified during the acquisition of an enterprise

system that incorporates common office productivity applications that run on a personal
computer networked to remote servers. Such a system can include a Web browser, word
processor, e-mail, and calendaring applications that are configured to operate on a personal
computer, where the PC’s operating system, Web browser, and other applications need to
be configured to access remote data/Web content servers. Figure 1 shows part of the
system ecosystem of software producers and the components they can provide for our
enterprise system.

Figure 1. A Partial View of a Software Ecosystem of Producers and the Software
Components for an Enterprise System They Produce

Figure 2 shows the design-time architecture of such an enterprise system. What
might a secure product line for a system like this involve, and how might it provide benefits
and security qualities to be specified for design-time, build-time, and run-time? How can its
OA and product-line characteristics contribute to security throughout the acquisition system
life-cycle?

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=176 -

=

Figure 2. A Design-Time Reference Model of an OA System That Accommodates
Multiple Alternative System Configurations

We envision an approach in which non-functional requirements, such as security,
reliability, and evolvability requirements at acquisition time are elaborated at design- and
build-times by specific functional requirements that explain how and to what degree the non-
functional requirements are going to be satisfied at run-time. Analogous to our previous
work with IP licensing, we envision that these requirements are structured in the same
logical forms as IP licenses (with specific rights that are obtained only by fulfilling specific
obligations) and managed through the architecture by the same approach of calculating
which obligations are satisfiable, in what way, and as a result what rights are available
(Alspaugh et al., 2009; Alspaugh et al., 2010; Scacchi & Alspaugh, 2011).

Figure 3. A View of an OA Software Ecosystem That Provides Alternative,
Functionally Similar Components Compatible With the Reference Design-

Time Architecture

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=177 -

=

Figure 3 illustrates a possible OA software ecosystem for this product line. Here, a
number of possible producers and alternative components have been placed into play, and
four specific instance architectures (produced in four specific ecosystems) have been
sketched. With appropriate architectural topologies, and appropriate shim components and
connectors inserted between the major components, each of these four instance
architectures can support the same functionality. It is also possible to achieve different
nonfunctional qualities, including security qualities through the four choices, for example, by
requiring that OS be an appropriate security-enhanced version of Linux, or by requiring that
the network protocol connector be HTTPS.

Within the overall ecosystem of Figure 3, Figure 4 shows one possible instance
ecosystem involving specific producers (Mozilla, abisource.org, gnome.org, Red Hat) and
specific alternatives (Firefox, AbiWord, Evolution, Fedora).

Figure 4. A Selection Among Alternative Components That Can Be Included at
Build-Time to Produce an Integrated System Compatible With the Design-

Time Reference

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=178 -

=

Figure 5. An End-User Run-Time Version of the Selected Alternative Components
That Fulfills the Design, Where the Red Hat Enterprise Linux Operating
System (Lower Right Corner) Can Utilize the Security Modules Library,

SELinux, for Coding and Enforcing Mandatory Access Control on
Programs/Data and Other Security Capabilities

Acquisition-time requirements, such as the use of SE Linux and the use of HTTPS,
could be satisfied by this choice; with an appropriate architecture, the IP licensing
obligations could also be satisfied. At design-time, the functional requirements would need
to be satisfied by appropriately specified shims inserted among the principal components,
and if such shims could be designed then this would be the proof that the acquisition-time
nonfunctional requirements could also be satisfied. Figure 5 shows a run-time view of this
instance architecture, resulting from the specific OA ecosystem and instantiating the overall
ecosystem of Figure 3 and the software product line of which the software system is an
instance.

This instance architecture has both a manageable IP license regime that ensures its
openness and a manageable security regime. For IP, in this architectural instance, all
component versions can be selected to use permissive licenses (Web browser, Web server)
or reciprocal GPL licenses (word processor, e-mail, calendar, and operating system), They
are cleanly separated by dynamic run-time links, which are types of connectors that do not
transmit IP obligations or rights, though they do allow for control flow integration and data
flow interoperation.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=179 -

=

Figure 6. A Second System Configuration Using Alternative but Functionally
Similar Components

Figure 6 outlines an alternative system configuration and the instance ecosystem
that produces it. This instance architecture substitutes services for components in the case
of Google Docs for the word processing functionality and Google Calendar for the calendar
functionality. With appropriate shims and changes to the architectural topology this
combination of major components could also support the system’s functional requirements,
and because the services are accessed through client-server connections, which block the
propagation of most license obligations, there are a number of ways to satisfy the IP
constraints imposed by the component and service licenses.

This alternative configuration also highlights possible acquisition-time concerns and
the nonfunctional requirements and security license issues that follow from them. For
example, a remote service, such as Google Docs, provides benefits and imposes costs with
respect to a compiled component, such as AbiWord. On the one hand, the remote service
makes some qualities easier to achieve (data sharing, backup, etc.), but on the other hand
may make some qualities harder to achieve (data security over a network connection and in
the “cloud,” up-time of the service, little or no control over when new versions of the service
are used compared to complete control over when new versions of a component are
integrated).

 Who in the ecosystem of human actors for this system has the right to make the
decisions to use a service in place of a component, or one component version in
place of another? What obligations are they required to satisfy first? These
questions are of concern at acquisition time and, we claim, are addressable by
acquisition licenses that restrict rights and impose obligations important to
system acquisition officers, just as IP licenses do for IP rights and obligations
important to software producers.

 When can these decisions be made? In traditional development processes, these
would occur at design-time; but in the larger view we propound here, such

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=180 -

=

decisions, or rather the policies or acquisition licenses that control them, are
perhaps more properly considered at acquisition time. As we see in Figure 7, it is
also possible that in order to achieve specific security qualities, they might be
made at build- or run-time, in response to specific threats.

Figure 7. An End-User View of the Alternative Run-Time System Configuration

Figure 7 shows a run-time view of this alternative configuration. To the end user, this
system appears quite similar to the one in Figure 5, and the differences might scarcely be
noticed, which raises the next set of possibilities.

Both these instance architectures specify specific alternatives for the major
components, for example, Firefox for the Web browser component. But which version of
Firefox? For example, it is quite possible that both the instance architectures discussed
above could be implemented using either Firefox 10 or Firefox 11, satisfying all the
functional requirements with no change to the instance architecture and no revision of
software shims. Who has the power to decide to use version 10 rather than version 11?
How late in the software process can this decision be made? For example, could it be made
as late as system startup time by a system user, in response to a particular security attack
on the previous configuration?

At the conceptually lowest level, the advent of code randomization and multi-variant
software executables leads to the possibility of substituting essentially equivalent variants of
the same component, most obviously at build-time. The decision to substitute one variant for
another, or the decision to allow the substitution, can be made through the entire range of
development times from acquisition time to run-time. The substitution can be put into effect
by a human actor or by a software monitor following a security policy, either randomly or in
response to specific events in the environment.

Finally, an orthogonal consideration is the use of containment vessels to encapsulate
components or subsystems within a virtual machine, to monitor and control interactions

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=181 -

=

among components and subsystems in order to block attacks and protect vulnerable parts
of a system. Figure 8 shows a screenshot in ArchStudio of a design-time architecture
utilizing eight containment vessels, seven for individual components and connectors and the
eighth for the group of components and connectors associated with the OS.

Figure 8. A Security Configuration Alternative for the Run-Time Configuration
Instance That Encapsulates OA System Components and Connectors

Within Different Virtual Machines (e.g., using the “Xen Hypervisor
Project,” 2012)

For security, the GPL’d Fedora can employ the SELinux capabilities to restrict all
shell/operating systems commands through mandatory access control and type
enforcement (see Figure 8), while other components can all be contained within one (for
minimal security confinement) or more (for increased security confinement on a per
component basis) Xen-based virtual machines (again, see Figure 8). The interoperability of
SELinux and Xen is now a common feature of many large Linux system installations (e.g.,
Amazon.com now has more than 500K Linux systems running Xen; “SELinux on Xen,”
2012; “Xen Hypervisor Project,” 2012).

Discussion and Conclusions
Our goal in this study was to develop and demonstrate a new approach to address

challenges in the acquisition of secure OA software systems. Program managers,
acquisition officers, and contract managers will increasingly be called on to provide review
and approval of security measures that are employed during the design, implementation,
and deployment of OA systems. We seek to make this a simpler and more transparent
endeavor. This requires security policies that are appropriate for review and approval during
acquisition by people who may not be expert in the specifics of how best to ensure that
secure systems will result. Our view is to address this need by investigating how best to
specify or model system security in ways that can accommodate security as a continuous
process that must be supported throughout the system acquisition life-cycle for OA systems
(Scacchi & Alspaugh, 2008, 2011).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=182 -

=

Our efforts reported here reveal that it is possible to employ a scheme through which
complex OA systems can be designed, built, and deployed with alternative components and
connectors into functionally similar system versions in ways that allow for overall system
security through the use of multiple security mechanisms. We described a scheme for how
to realize and specify such OA system configurations in ways that are inherently compatible
with existing security mechanisms, and this scheme does not assume that individual system
elements must be secure before inclusion into the secured system’s configuration. Central
to our scheme is the incorporation of software product line concepts that are integrated with
security mechanisms in a coherent way that is amenable to automated support and
acquisition management. We also provided a case study that reveals where and how we
specify a secure OA enterprise system product line in ways that can accommodate the
diverse needs of software producers, software developers, system integrators, users, and
acquisition managers. What remains as an important next step for this line of research effort
is to more fully articulate how to simply and transparently specify OA system security using
streamlined security policies using the kind of system security licenses we anticipate
(Scacchi & Alspaugh, 2011), as well as designing and developing a prototype automated
system that can support the modeling and analysis of OA system security policies,
alternative version OA system configurations, and different OA security licenses.

References
Alspaugh, T. A., Asuncion, H., & Scacchi, W. (2009). Intellectual property rights requirements for

heterogeneously licensed systems. In Proceedings of the 17th IEEE International Requirements
Engineering Conference (pp. 24–33).

Alspaugh, T. A., Asuncion, H., & Scacchi, W. (2011). Presenting software license conflicts through
argumentation. In Proceedings of the 23rd International Conference on Software Engineering
and Knowledge Engineering.

Alspaugh, T. A., Scacchi, W., & Asuncion, H. (2010, November). Software licenses in context: The
challenge of heterogeneously licensed systems. Journal of the Association for Information
Systems, 11(11), 730–755.

Attack of the computer mouse. (2011, June 29). Retrieved from The H Online Security website:
http://h-online.com/-1270018

Bosch, J. (2006, December). The challenges of broadening the scope of software product families.
Communications of the ACM 49(12), 41–44.

Bosch, J. (2009). From software product lines to software ecosystems. In Proceedings of the 13th
International Software Product Line Conference (pp. 111–119).

Breaux, T. D., & Anton, A. I. (2005). Analyzing goal semantics for rights, permissions, and obligations.
In Proceedings of the 13th IEEE International Conference on Requirements Engineering (pp.
177–188).

Breaux, T. D., & Anton, A. I. (2008). Analyzing regulatory rules for privacy and security requirements.
IEEE Transactions on Software Engineering, 34(1), 5–20.

Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns. New York, NY:
Addison-Wesley.

DoD Open Source Software (OSS). (2010). Frequently asked question regarding open source
software (OSS) and the Department of Defense (DoD). Retrieved from http://cio-
nii.defense.gov/sites/oss/Open_Source_Software_%28OSS%29_FAQ.htm

DoD. (2011, July). Department of Defense strategy for operating in cyberspace. Retrieved from
http://www.defense.gov/news/d20110714cyber.pdf

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=183 -

=

Falliere, M., et al. (2011, February). W32.Stuxnet Dossier, version 1.4. Retrieved from
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_s
tuxnet_dossier.pdf

Firesmith, D. (2004, January–February). Specifying reusable security requirements. Journal of Object
Technology, 3(1), 61–75.

Franz, M. (2010, September). E unibus pluram: Massive-scale software diversity as a defense
mechanism. In New Security Paradigms Workshop. Concord, MA.

Garcia, P. (2010). Maritime C2 strategy: An innovative approach to system transformation. In
Proceedings 15th International Command & Control Research & Technology Symposium (Paper
147). Santa Monica, CA.

Gizzi, N. (2011). Command and control rapid prototyping continuum (C2RPC) transition: Bridging the
Valley of Death. In Proceedings of the Eighth Annual Acquisition Research Symposium (Vol. 1).
Monterey, CA: Naval Postgraduate School.

GNU. (2007). GNU general public license. Retrieved from http://www.gnu.org/licenses/gpl.html

Loscocco, P., Smalley, S., Muckelbauer, P., Taylor, R., Turner, S., & Farrell, J. (1998). The
inevitability of failure: The flawed assumption of security in modern computing environment. In
Proceedings of the 21st National Information Systems Security Conference (pp. 303–314).

Narayanaswamy, K., & Scacchi, W. (1987). Maintaining configurations of evolving software systems.
IEEE Transactions on Software Engineering, 13(4), 323–334.

Navy. (n.d.) Navy open architecture guidelines. Retrieved from https://acc.dau.mil/oa

Navy. (2010). PEO IWS releases open architecture contract guidebook update. Retrieved from
http://www.navy.mil/search/display.asp?story_id=53661

Salamat, B., Jackson, T., Wagner, G., Wimmer, C., & Franz, M. (2011, July). Run-time defense
against code injection attacks using replicated execution. IEEE Transactions on Dependable and
Secure Computing, 8(4).

Sawers, P. (2011, June 28). US govt. plant USB sticks in security study, 60% of subjects take the
bait. TNW: The Next Web. Retrieved from http://thenextweb.com/industry/2011/06/28/us-govt-
plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait

Scacchi, W., Brown, C., & Nies, K. (2011, July). Investigating the use of computer games and virtual
worlds for decentralized command and control (Grant #N00244-10-1-006). Irvine, CA: University
of California, Irvine, Institute for Software Research. Retrieved from
http://www.ics.uci.edu/~wscacchi/ProjectReports/NPS-Reports/DECENT.pdf

Scacchi, W., & Alspaugh, T. (2008). Emerging issues in the acquisition of open source software
within the U.S. Department of Defense (NPS-AM-08-036). In Proceedings of the Fifth Annual
Acquisition Research Symposium (Vol. 1, pp. 230 –244). Monterey, CA: Naval Postgraduate
School.

Scacchi, W., & Alspaugh, T. (2011, May). Advances in the acquisition of secure systems based on
open architectures. In Proceedings of the Eighth Annual Acquisition Research Symposium.
Monterey, CA: Naval Postgraduate School.

Seacord, R. (2008). The CERT C secure coding standard. New York, NY: Addison-Wesley.

SELinux on Xen. (2012). Retrieved from http://wiki.prgmr.com/mediawiki/index.php/SELinux_on_Xen

Shrobe, H. (2011, November). Secure computing systems. Presentation at the Darpa Colloquium on
Future Directions in CyberSecurity, Arlington, VA. Retrieved from
http://www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484460

Security technical information guide, Android 2.2 (Dell). (n.d.) Retrieved from
http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=184 -

=

Smalley, S. (2012). The case for security enhanced (SE) android. Retrieved from
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf

Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D., & Lepreau, J. (1999). The flask
security architecture: System support for diverse security policies. In Proceedings of the Eighth
USENIX Security Symposium (pp. 123–139).

Stuxnet. (2011). Overview. Retrieved from http://en.wikipedia.org/wiki/Stuxnet

Sun, K., Wang, J., Zhang, F., & Stavrou, A. (2012). SecureSwitch: BIOS-assisted isolation and switch
between trusted and untrusted commodity OSes. In Proceedings of the 19th Annual Network
and Distributed System Security Symposium.

Xen Hypervisor Project. (2012). Retrieved from http://www.xen.org/products/xenhyp.html

Yau, S. S., & Chen, Z. (2006). A framework for specifying and managing security requirements in
collaborative systems. In Proceedings of the Third International Conference on Autonomic and
Trusted Computing (pp. 500–510).

Acknowledgements
Research described in this report was supported by grant #N447602-12-1-0004 from

the Acquisition Research Program at the Naval Postgraduate School and from grant
#0808783 from the National Science Foundation. No review, approval, or endorsement is
implied.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net

Addressing Challenges in the
Acquisition of Secure Software

Systems with Open Architectures

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

2

Overview

 Challenges of securing open architecture
(OA) systems

 Specifying security requirements for
software systems

 Case study: Specifying secure software
product lines within an OA software
ecosystem for enterprise systems

 Discussion and conclusions

3

Challenges of securing open
architecture (OA) systems

4

Security challenges
 Security threats to software systems are increasingly

multi-modal and distributed across system
components.

 Physically isolated systems are vulnerable to external
security attacks, via portable storage devices like USB
drives, modified end-user devices, and social
engineering techniques.

 What makes an OA system secure changes over time,
as new threats emerge and systems evolve.

 Need an approach to continuously assure the security
of evolving OA systems that is practical, scalable,
robust, tractable, and adaptable.

5

Software systems/components
evolve: what to do about security?

 Individual components evolve via revisions (e.g., security patches)

 Individual components are updated with functionally enhanced
versions;

 Individual components are replaced by alternative components;

 Component interfaces evolve;

 System architecture and configuration evolve;

 System functional and security requirements evolve;

 System security policies, mechanisms, security components, and
system configuration parameter settings also change over time.

6

Current security approaches
 Mandatory access control lists, firewalls;

 Multi-level security;

 Authentication (including certificate authority and passwords);

 Cryptographic support (including public key certificates);

 Encapsulation (including virtualization), hardware confinement (memory,
storage, and external device isolation), and type enforcement capabilities;

 Secure programming practices;

 Data content or control signal flow logging/auditing;

 Honey-pots, traps, sink-holes;

 Security technical information guides for configuring the security
parameters for applications and operating systems;

 Functionally equivalent but diverse multi-variant software executables.

7

What acquisition research is needed
for security?

 How to verify the security of OA system designs
throughout acquisition life cycle: system development,
deployment, and post-deployment support.

 How to validate the effectiveness of OA system security
measures and knowledge of vulnerabilities into the
ongoing development for systems in an operational,
testable form that system integrators and administrators
can employ, and acquisition program managers can
assess.

8

Specifying the security requirements
for software systems

9

Carefully specifying security policy
obligations and rights

 The obligation for a user to verify his/her authority to see compartment T,
by password or other specified authentication process

 The obligation for all components connected to specified component C to
grant it the capability to read and update data in compartment T

 The obligation to reconfigure a system in response to detected threats,
when given the right to select and include different component versions, or
executable component variants.

 The right to read and update data in compartment T using the licensed
component

 The right to add, update, replace specified component D in a specified
configuration

 The right to add, update, or remove a security mechanism

 The right to update security policy L.

10

Case Study:
Securing software product lines

within an OA software ecosystem
for enterprise systems

11

Software product lines?

 When functionally similar software components,
connectors, or configurations exist,

 Such that equivalent alternatives, versions, or
variants may be substituted for one another,
then

 We have a strong relationship among these OA
system elements that is called a software

product line.

12

Software ecosystem of producers and the software components for
an enterprise system

13

Framework for specifying multi-level
OA system security policy

14

A design-time specification of an OA enterprise system that
accommodates multiple alternative system configurations

,~~~~~~~~~~~~~~~~~~~~~~~~~~~--~-::::::::::::::_~~~-:::-~~-::--:=========================='
/f \ I \ I \1
1

' Web Browser I I Word Processor I I Email & Calendar ~ . II I I I I 11
II . I I I I , 11 .. User Interface I I User Interface I I User Interface 1

• It I I J l ' 11 ':: = = = = = = = = = = = = l = = = = = = = = = = = = =:::-::: = =: = =: = =: = = :f =:: =: =:: = =: = ~-_ ... __________________________ f _-_-_-_;-_-_-_-_-_-_-_-_-:
,------------- -1 ,------------- - , ,--------------,
~ Connector 1 } ~ Connector 2) ~ Connector 3 --' -- - - - - -; - - - - - - - - - - - - -; - - - - - - -- - - - - -; - - - - - -

r----w~-b-8~~~~~~---- ... : r,-- \NorCf_F>_rocessar ___ J r--ErTiail-&-cailen-dar--J
I I '------------- ------------- '------------- -------------

: (i~t-r~--Appli~~ti~~-s~-ripti~9 : : 4~ ____ ._ ____________________ _
... -------------------------- "' , \ -------- ---r------------ :, !'!!l!!-:/)pp_l!c_~~ig_n_ §.q~ip!~'!.[} _ ;~f--------1

,------------------, ,------------------, ,------------------,
~ API 1 I I API 2 : ' API 3 :

----~~~~~~~~~;~~~~~~~~;------- - ~::::-:::] :::::::::---- ----~~~~?:~~~;~~~~~~~!~:----
: Web App Server J [Operating System J : Email Server J
'--------------------------- '--------------------------- ' ---------------------------

IS R Institute for Software Research
UNIVERSITY OF CAUFORNIA, IRVINE

15

Software product line that provides alternative, functionally similar
components compatible with the reference design-time architecture

Fire fox

Browser,
WP,

calendar

Opera

Instance
architecture:

Firefox~
AbiWord,
Evolution,

Fedora

GPL

AbiWord Google
Docs

OR

Instance
ardlitecture:

Firefox,
Google cat.,
Google Docs,

Fedora

IS R Institute for Software Research
UNIVERSITY OF CAUFORNIA, IRVINE

OR

Google
Calendar

Gnome
Evolution

Instance
architecture:

Fire fox,
Google cal.,
Google Docs,

Windows

OR

Fedora Windows

Instance
architecture:

Opera,
Goog/e Docs,

Evolution,
osx

Opera EULA,
~leToS,

Apple License

OR . ..

osx

16

A build-time deployment selection among alternative components that
produce an integrated enterprise system within the product line

Fire fox

Design-time
architecture:

Browserr
WPr

calendar

Opera

Opera EULA

Instance
architecture:

Firefox,
AbiWordr
Evolutionr

Fedora

GPL

AbiWord Google
Docs

Instance
architecture:

Firefoxr
OR Google Cal.,

Goog/e Docsr
Fedora

GPL,
Google ToS

IS R Institute for Software Research
UNIVERSITY OF CAUFORNIA, IRVINE

OR

Google
calendar

Gnome
Evolution

Instance
architecture:

Firefoxr
Google cal.r OR
Goog/e Docs,

Windows

MPL, Google
ToS, MS EULA

Fedora Windows osx

Instance
architecture:

Opera,
Google Docs, OR ...

Evolution,
osx

Opera EULA,
GoogleToS,

Apple Licel'lSe

17

A security capability specification encapsulating the run-time
configuration instance via multiple virtual machines (e.g., using Xen)

Unix System Calls

Apache HTTP

· -- ---- --•--- ----.... I I

I(WordPerfect •

RH/Fedor a Linux
(OS)

I
I
I
I

IS R Institute for Software Research
UNIVERSITY OF CAUFORNIA, IRVINE

Gnome Evolution

Unix System Calls

XMail

18

An end-user run-time deployment version of selected components
within enterprise system product line utilizing security library,

SELinux, for enforcing mandatory obligations and rights.

Bte Edt ~'""'· H~ory .B.ookmar'k.s]Jols !::telp

N•w
=I

FY"int • PrGviou;

[) <::lhndW1S. HDnd•,~AprlOl.O Sho!!t 1\ny>Cat:@(!Of)'

r;-o;; Thi' Co:mpu·urr J -• ~.orua~t:s J

- Brthdays fr ,t.rn;..ers.

o.prJ2010

6 10 11
l1 13]~ D lG 17 18
].9 20 Zl 2 2 23 24 2~

liE 27 28 29 30

~ .. ,
-

.:leontam C;alendars

Tlls*s

n r:1 Summ;uy

leo"'~ to odd • t<••k

~----=====::::::::::::=--- ID 0 ""'
1 pm !i)LODpm

PropO:Ii~ n;,...,ow """'bng

Memo a

3 pm } .OOpm
~~ C£1 JSS Piafl"'' dran

"'' Summ:wy

I click. to odd • memo

fir Uve System User Man "¥ M, 3: 50PM lfj.

LSD"

v 'limn New Roman v l2 a a I
. l 4 5 6

A Composed Open Architecture Software System at Run-Tim~

-· ...
1 ,.. •!..:-::;._.,._
2~

] _~_ ..

, _ •, • • ___ :Ill ~

I I J <1 4 11 '

I '
,P~ge.

• EO• Ecit lloow]Orm,...l ~· l;iolp
l ftOI"'fll.
1fdown
$fwes.lol'•<G
lf~o~M

lfu
tnlt

l'JCOO\IDrt

\.,1(Uoll1•

lo~dUpl.oli

\o~ettten~ , ..
b1•c ~nor.:

Y~;reaoo~e

•occrcOa 'hutdcr""' Y~nm..,11 r~:;;.• ,,,.tt .. clll •9' - •ln Y9'(.ol

•Nn r~,.-4 SU•t YC'"'P\ t
•Oiofn f'ltt"i nr~ rt u: .. y tt~-"· .. -KHlUt ~'S

IIOWlt f'1fl lo ,tntus ypb1no1

~.o.lnVJ~ 111ttng t·o~•l'l:S~kSCI'tf" •or.Ttt ,.,,,. "-·~" rr .. (~-!'ltte- ,t.,p
[l1Ye\l~e-r@l.O<:II\bos t sblnJS p~
/!.biD
[ltVftJ~af"ll.OCi11b05iit 't>J.nJ\ Cd . . jUU.nLD
[UY$\i,erf\Oc:albo,;t ~•UOI.IJ(I s \,;;

c.McknuFrO[co~t .at dGa)l ..-.~~n lnltl~' c:c..nt.ects
eta >< <onteKt d1sabte tood

bOol#'.=tfl~ COIJil t Pf'tllllnQ _Dools. <f'e~u: entot<e lef'ltleor

11U po11c:yi.iars; "~•r

.-.je<t ~
poll</ c •bl ll t H < rt1al>@t

g_ ll1iv~~oulh05t lse

[u ""''e-r(t.l.oce\no, t se-u"")l,;;;.:l..:;~_.o..._ __
6J ('.,lendo<-5 · fvol.mon ~~!>-Rq_u_«_-«_•_,ft_;ob___,o =---f\ Pm

1: GCTL · W•s~on · Modi

19

 Updated post-deployment system configuration, using alternative but
functionally similar components within enterprise system product line

Fire fox

Design-time
architecture:

Browser,
WP,

calendar

Opera

Instance
architecture:

Firefox,
AbiWord,
Evolution,

Fedora

GPL

AbiWord
Googfe
Docs

Instance
ardlitecture:

Firefox,
OR Google Gal.,

Google Docs,
Fedora

IS R Institute for Software Research
UNIVERSITY OF CAUFORNIA, IRVINE

OR

Google
calendar

Gnome
Evolution

Instance
architecture:

Firefox,
Google Cal., OR
Google Docs,

Windows

MPL, Google
ToS, MS EULA

Fedora Windows osx

MS Eula

Instance
architecture:

Opera,
Google Docs, OR •••

Evolution,
osx

Opera EULA,
G~leToS,

Apple License

20

An end-user view of the updated alternative run-time system
configuration

I) o\PPIIUo!IOI"I$ Plac~~ &;sleM

~

C oogle calendar

Cre-.aJe Eve.l
ou<tA<Id
T~lu.

... 111410

~ M T 1'1 r

' ' l

• • • 1 •
12 1> 13 .. "' 1• lit lD 21 D

2sllll 21 20 l'9

:!o
l

• 1D

u H ,. Z4

lO

.... Re1re~h

t; ~ D")' woe• r~onlh • ~>or• "9..,m_

~ .. ~--------~------~~----~--------.---~----------~
''"

• GCTL • Mis5ion • MozJI

• U~ S~~~~m U~H Man Apr lo!l, 3:42PM ill'
'

Go~lt DOC~ • Al rtOlm J .0 A (OfT'IJO!@O Op• n Artlltoc .)I;

~~~-----------~Wtl= · 

Gougle docs A compos«~ Opoo Alehnacrure solt>Jw·a ... 

VIGW tls. liut F onniiili T ac.IJo Tool::lil H8p 

... 

• !:.. • .... 

D<no 

• 

W11tr I 

.,lHOQ' 

stllni'S pwd 

_t!olp 

~dl."ll bools. c r eate 
I (l.l~""''e"@l<><oU.•,. t 5~l11'"4.:11i IS 0 

3• ~~- . .. 

t·o~cl"...:.ng..: 

L .,ol..a':.Yiitft 

t .... cu.o.t(l' 

l•HH•\ir 
t .. · .. ,.( .:or•O 
h·· 
l .... r:~fl"'l"!' 
llo'•r...t-;1-isC:"t~ 

a0o!ln1.:-
•ud!P oc.e . .,. t l'u:;CJ -·~t h-1 
•Olltt 1\th . .,...,, tfs-l~ 

... 
~
~~ 

7" ·-

•o7'1t !lil\fS-1\"S~ 

oeooy ""'kno'lln 1~ tal <~nn•ts n\5 

FOp a.-:· ~r:.. tf 
w..-ooo-s.t.a t: 
f..VPiloQ' U.31til"' 

J".,.IPO~·SNP 
I:Vp-w-tt(n 
r-.-.;:h.)!l!'1~e 

(':'Ck 

r.-.:r-e.,,fe 

ouaote toao E 
er.f o,.ce •enber pol u :y capabs. h t 1~' 

Ud ~:k 
UtutCIO 

,1 .. n .. C!!I 

Sln 
H11rt 

VSI4UI.MII~ 

·~· VC"i l rl 

Y~•Pllt 
tMNio.·,d• \fl'5 

ypcintJ 

po11<YH'f5 us•r 
reJ«t .,~now11 
~lobel 



21 

Discussion and conclusions 



22 

Discussion 

 Our goal is to develop and demonstrate a new 
approach to address challenges in the acquisition of 
secure OA software systems.  

 Program managers, acquisition officers and contract 
managers will increasingly be called on to provide 
review and approval of security measures that are 
employed during the design, implementation, and 
deployment of OA systems.  

 We seek to make this a simpler, more transparent, 
and more tractable process. 



23 

Conclusions (1) 
 Our research demonstrates how complex OA systems can be 

designed, built, and deployed with alternative components and 
connectors into functionally similar system versions, to realize for 
overall system security.  

 We described a scheme to specify and realize OA system 
configurations that are compatible with existing security mechanisms. 

 Our scheme does not assume that individual system elements 
must be secure before inclusion into the secured OA system’s 
configuration. 

 Central to our scheme are software product line concepts integrated 
with security mechanisms.  

 We provided a case study that reveals how to specify a secure OA 
enterprise system product line accommodating diverse needs of 
software producers and developers, system integrators, users and 
acquisition managers. 



24 

Conclusions (2) 

Next steps: 

 Articulate the process how to simply and transparently 
specify and assess OA system security using 
streamlined security policies.  

 Develop and demonstrate a prototype automated 
environment that can support the modeling and 
analysis of OA system security policies and alternative 
version OA system configurations, in ways that 
address the diverse needs of acquisition managers, 
system integrators and end-users. 



25 

Acknowledgements 
 
 

Research described in this presentation was 
supported by grant #N447602-12-1-0004 from the 

Acquisition Research Program at the Naval 
Postgraduate School, and from grant #0808783 

from the National Science Foundation. No review, 
approval, or endorsement implied. 


